Tomado de:

 http://www.salonhogar.net/salones/matematicas/webapps/vmd/mathdictionary/htmldict/spanish/vmd/full/t/translationofaxes.htm

 

translación de ejes

Cambio de los ejes de referencia sin girarlos, de manera que cada eje permanece paralelo a su posición original. Una vez que el origen de un sistema de ejes x e y se cambia al punto O´(xo, yo) en el sistema original, es necesario dar a cada punto p(x, y) en el sistema original un nuevo conjunto de coordenadas p´(x´, y´) en el nuevo sistema, de acuerdo con las siguientes relaciones:

x = x´ + xo
y = y´ + yo

El propósito de tal traslación de ejes es simplificar la ecuación de una curva para procesamiento posterior. Por ejemplo, un círculo con centro en (1, 2) y un radio r = 3, se puede describir por medio de la siguiente ecuación:

(x - 1) 2 + (y - 2) 2 = 32

Cuando los ejes de referencia se cambian a O´(1, 2), el mismo círculo se puede describir como:

[(x´+1) - 1] 2 + [(y´+2) - 2] 2 = 32
o
(x´) 2 + (y´)2 = 32

Como se muestra, es definitivamente más fácil trabajar con la ecuación en el nuevo sistema.

Giro de centro O(0,0)

 

 

 

 

 

 

Giro de centro O'(a,b)